Adhesion controls bacterial actin polymerization-based movement
نویسندگان
چکیده
منابع مشابه
Adhesion controls bacterial actin polymerization-based movement.
As part of its infectious life cycle, the bacterial pathogen Listeria monocytogenes propels itself through the host-cell cytoplasm by triggering the polymerization of host-cell actin near the bacterial surface, harnessing the activity of several cytoskeletal proteins used during actin-based cell crawling. To distinguish among several classes of biophysical models of actin-based bacterial moveme...
متن کاملPolycomb Group Protein Ezh2 Controls Actin Polymerization and Cell Signaling
Polycomb group protein Ezh2, one of the key regulators of development in organisms from flies to mice, exerts its epigenetic function through regulation of histone methylation. Here, we report the existence of the cytosolic Ezh2-containing methyltransferase complex and tie the function of this complex to regulation of actin polymerization in various cell types. Genetic evidence supports the ess...
متن کاملActin polymerization stabilizes α4β1 integrin anchors that mediate monocyte adhesion
Leukocytes arrested on inflamed endothelium via integrins are subjected to force imparted by flowing blood. How leukocytes respond to this force and resist detachment is poorly understood. Live-cell imaging with Lifeact-transfected U937 cells revealed that force triggers actin polymerization at upstream α4β1 integrin adhesion sites and the adjacent cortical cytoskeleton. Scanning electron micro...
متن کاملPurified Integrin Adhesion Complexes Exhibit Actin-Polymerization Activity
BACKGROUND Cell adhesion and motility are accomplished through a functional linkage of the extracellular matrix with the actin cytoskeleton via adhesion complexes composed of integrin receptors and associated proteins. To determine whether this linkage is attained actively or passively, we isolated integrin complexes from nonadherent hematopoietic cells and determined their influence on the pol...
متن کاملARF1-mediated actin polymerization produces movement of artificial vesicles.
Vesicular trafficking and actin dynamics on Golgi membranes are both regulated by ADP-ribosylation factor 1 (ARF1) through the recruitment of various effectors, including vesicular coats. Actin assembly on Golgi membranes contributes to the architecture of the Golgi complex, vesicle formation, and trafficking and is mediated by ARF1 through a cascade that leads to Arp2/3 complex activation. Her...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2005
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.0507022102